
PHYSICAL REVIEW E JULY 1997VOLUME 56, NUMBER 1
Coherences and populations in the driven damped two-state system
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The dynamics of the density matrix of the two-state system under the influence of time-dependent deter-
ministic and fluctuating forces is investigated. The exact formal solutions for the diagonal and off-diagonal
elements are derived and transformed into coupled nonconvolutive master equations and integral relations.
Thereby, the evolution ofanyobservable relevant to the two-state system may be described. Solutions of the
dynamical equations in analytic form are presented both for high and low temperatures. An iterative numerical
method is put forward in which the familiar noninteracting-blip approximation is systematically improved by
taking into account all bath-induced nearest-neighbor interblip correlations. The expanded treatment is found to
be indispensable in studies of the dynamics of the off-diagonal elements at low temperatures. Finally, we
discuss selection rules, as well as possibilities of control of tunneling, which occur in the presence of mono-
chromatic driving.@S1063-651X~97!11007-8#

PACS number~s!: 05.30.2d, 05.40.1j, 33.80.Be
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I. INTRODUCTION

The model of a quantum particle moving in a double w
potential and being in contact with a heat bath environm
has widespread application in diverse physical and chem
systems. It has been used, e.g., to describe long ra
electron-transfer reactions@1#, the tunneling of atoms be
tween an atomic-force microscope tip and a surface@2#, or
the magnetic flux dynamics in a superconducting quan
interference device@3#. At sufficiently low temperatures, th
system can be effectively restricted to the two-dimensio
Hilbert space spanned by the ground states of the two po
tial minima. Complete information on the damped tunneli
dynamics of this two-state system~TSS! is contained in the
reduced density matrix~RDM! of the system. In the basi
representation of the localized states, the diagonal elem
represent thepopulations. In contrast, the off-diagonal ele
ments of the RDM, the so-called ‘‘coherences,’’ descr
quantum interference effects. In the recent past, lots of
forts have been dedicated to the evaluation of the populat
@4–6#.

The isolated TSS is the simplest system exhibiting qu
tum interference effects. Namely, it may be prepared s
that it exhibits clockwise oscillations of the populations
the two localized states. The influence of a stochastic fo
generally results in a reduction of the coherent motion a
may lead to pure monotonous relaxation towards the equ
rium state for sufficiently high temperature and/or dampi
It may even lead to a transition to localization at zero te
perature@7#. Besides the stochastic force, the system may
influenced by a deterministic time-dependent force. Th
have been made numerous studies about the control of
neling by time-dependent external fields@8–19#.

In this work, we concentrate the discussion on the o
diagonal elements of the RDM. The coherences have b
studied recently within the traditional optical Bloch equ
tions by employing the weak-damping limit and by treati
the propelling field in the rotating-wave approximation@20#.
Here we present the exact formal solution for the RDM a
561063-651X/97/56~1!/334~12!/$10.00
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we give exact relations between the matrix elements. A
result of the analysis, we can then describe the time ev
tion of the mean value ofanyobservable relevant to the TSS
As an example, we study, both analytically and numerica
the time evolution of the real and of the imaginary part of t
coherences.

This paper is structured as follows. In Sec. II, we intr
duce the model and the relevant dynamical quantities. In S
III A, we derive the exact formal solution for the population
and coherences. The related set of closed dynamical e
tions is given in Sec. III B. In Sec. IV, we present results
the system’s dynamics in analytic form in various limits. T
noninteracting-blip approximation~NIBA ! for the stochastic
forces is briefly considered in Sec. IV A. The dynamics
the Markov limit and for a static bias is presented in S
IV B. The dynamics for weak damping and low temperatu
is discussed in Sec. IV C. For a static bias, the correcti
beyond the NIBA are presented in analytic form. In Sec.
we describe a treatment of the random force beyond
NIBA which we refer to as the ‘‘interacting-blip chain ap
proximation’’ ~IBCA! @21#. In the IBCA, the bath-induced
correlations within all nearest-neighbor blip-sojourn-blip i
tervals are fully taken into account. In Sec. VI, the vario
methods are applied and numerically evaluated in some
gimes. The conclusions are drawn in Sec. VII.

II. THE DRIVEN DAMPED SYSTEM

Tunneling phenomena in physics and chemistry can o
be modeled by a dissipative particle with only few accessi
localized states. As a working model, we consider the cas
two states, and damping comes about through contact w
heat bath, which is represented by an ensemble of line
responding oscillator modes with a continuum of eigenf
quencies. This is the familiar spin-boson model@4–6#, and
its usefulness in describing transfer dynamics in conden
phases has been well established. To be general, we allow
time-dependent modulation of both the transfer matrix e
mentD and the biasing energy«. The Hamiltonian of the
334 © 1997 The American Physical Society
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56 335COHERENCES AND POPULATIONS IN THE DRIVEN . . .
TSS alone may be written in the form~we put\5kB51)

H~ t !52D~ t !sx/22@«~ t !1z~ t !#sz/2. ~2.1!

Here, thes ’s are Pauli matrices, and the basis states are
localized eigenstatesuR& ~right! and uL& ~left! of sz with
eigenvalues11 and 21, respectively. We then hav
sx5uL&^Ru1uR&^Luandsz5uR&^Ru2uL&^Lu.

The variation ofD with time arises from a modulation o
the barrier of the underlying double well potential. For ha
monic barrier drive, we haveD(t)5D0exp(mcosVt), where
m is a suitable dimensionless amplitude~see the discussion
in Ref. @19#!. The quantity«(t) is the deterministic bias en
ergy. It is conveniently decomposed as

«~ t !5e01 f ~ t !, ~2.2!

where e0 is a bias related to intrinsic static strains, a
f (t) is a bias modulation due to an externally applied tim
dependent force. For electron transfer in a solvent, we c
ceive of controlling charge tunneling by application of stro
continuous laser fields. Regarding charge transfer in na
structures, we think of regulating the dynamics by turning
microwave irradiation or a high-frequency voltage. In pum
probe setups, the driving force is pulse shaped.

The coupling to a heat bath or solvent is captured b
fluctuating forcez(t). For a linear-response reservoir at fixe
temperatureT, z(t) obeys stationary Gaussian statistics. It
fully characterized bŷ z(t)&T50 and by the force autocor
relation function@4,6#

^z~ t !z~0!&T5
1

pE0
`

dvJ~v!
cosh~v/2T2 ivt !

sinh~v/2T!
. ~2.3!

As long as we are interested in the reduced dynamics of
TSS alone~RDM!, all effects of the environment are com
pletely specified by the spectral densityJ(v). An important
case is the Ohmic form

J~v!52pavexp~2v/vc!, ~2.4!

which is employed in the numerical simulations reported
low. Ohmic damping is of widespread importance in phy
cal and chemical condensed phase reactions@4–6#. The di-
mensionless friction parametera measures the strength o
frequency-independent damping, andvc is a high-frequency
cutoff for the bath modes. Most of the subsequent exp
sions, however, are valid for general frequency-depend
linear dissipation. Similarly, the numerical IBCA metho
presented below is also not limited to the case of Ohm
damping.

The RDM is a 232 matrix with diagonal element
r21,21 and r1,1, and off-diagonal elements~coherences!
r21,1 andr1,21. It can be written as a linear combination
the Pauli matrices and of the unit matrixI ,
r(t)5I /21( i5x,y,z^s i& ts i /2, where^s i& t[^Ru^s i(t)&TuR&.
Here^•••&T denotes thermal average according to Eq.~2.3!,
and ^Ru•••uR& is the expectation value with respect to t
initial stateuR&([u1&) of the TSS.Anymean value may be
expressed in terms ofr(t),

^sz& t5r1,1~ t !2r21,21~ t !, ~2.5!
e
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^sx& t5r1,21~ t !1r21,1~ t !,

^sy& t5 i @r1,21~ t !2r21,1~ t !#.

According to the chosen initial condition, we hav
rs,s8(t50)5ds,1ds8,1 . The quantitŷ sz& t describes the dif-
ference of the populations of the two localized states. It gi
direct information about the tunneling dynamics. The und
standing of the TSS dynamics is completed by the kno
edge of the coherences^sx& t and ^sy& t .

In the absence of driving and dissipation, the RDM can
evaluated straightforwardly, yielding

^sz& t5e0
2/E21~D2/E2!cos~Et!,

^sx& t5~e0D/E
2!@12cos~Et!#, ~2.6!

^sy& t5~D/E!sin~Et!.

As a result of quantum interference, the RDM shows u
damped oscillations with frequencyE5(D21e0

2)1/2, which
is the level splitting of the isolated TSS. For the symmet
TSS (e050), the eigenstates ofsx are just those of the iso
lated TSS Hamiltonian. Consequently, the initial val
^sx& t5050 is kept for allt.0.

In the following sections, we study the evolution of th
expectation values~2.5! of the RDM in the presence of driv
ing and dissipation.

III. THE REDUCED DENSITY MATRIX

A. The exact formal solution

The reduced density matrixrs,s8(t) is conveniently ex-
pressed in terms of a real-time double path integral,

rs,s8~ t !5E DqE Dq8A@q#B@q#A* @q8#B* @q8#e2F[q,q8] .

For initial staters,s8(0)5ds,1ds8,1 , the path sum is over al
spin paths q(t8),q8(t8) with boundary conditions
q(0)5q8(0)51/2,q(t)5s/2, andq8(t)5s8/2. For a TSS,
the pathsq(t8) andq8(t8) jump back and forth between th
positions11/2 and21/2. The quantityA@q# is the probabil-
ity amplitude of the TSS to follow the pathq(t8) in the
absence of biasing and fluctuating forces. The determini
biasing forces are encapsulated in the factor

B@q#5expH i E
0

t

dt8@e01 f ~ t8!#q~ t8!J . ~3.1!

The influence functionF@q,q8# captures the influences o
the fluctuating forcez(t). For Gaussian statistics@6,22#,

F5E
0

t

dt8E
0

t8
dt9@q~ t8!2q8~ t8!#@^z~ t8!z~ t9!&Tq~ t9!

2^z~ t9!z~ t8!&Tq8~ t9!#.

Finally, *Dq symbolically means summation in functio
space over all paths with fixed boundaries. In studies of
dynamics of the RDM, it is convenient to introduce the sy
metric and antisymmetric spin paths (0<t<t):
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336 56GRIFONI, WINTERSTETTER, AND WEISS
h~t!5q~t!1q8~t!, j~t!5q~t!2q8~t!.

The pathh(t) describes propagation straight along the dia
onal of the density matrix and can therefore be identifi
with the quasiclassical path. On the other hand, the p
j(t) records the off-diagonal excursions and therefore
connected with the quantum fluctuations. An interval dur
which the system propagates in an off-diagonal state
termedblip while an interval with propagation in a diagon
state is calledsojourn. During a sojourn, the functionj(t) is
zero, while during a blip interval, the functionh(t) is zero.
There are two sojourn and two blip states labeled
h561 andj561, respectively. For the two-state syste
the pathsh(t) andj(t) undergo sudden transitions betwe
blip states$j j% and sojourn states$hk% and vice versa at flip
times$t i%.

Consider now a definite path making a total of 2n transi-
tions that starts in the stateh0511 and ends in the stat
hn5 f (561). Assume that the flip times are chronolog
cally ordered, 0<t1<•••<t2n<t. The path consists ofn
blips and n11 sojourns, where sj5t2 j112t2 j and
t j5t2 j2t2 j21 are the sojourn and blip lengths, respective
The auxiliary flip timest0 and t2n11 are displaced to the
infinite past and future.

As the paths are piecewise constant, the influence fu
tion F is conveniently expressed in terms of the second
tegral of the force correlation function~2.3!,

Q~t!5
1

pE0
`

dv
J~v!

v2

cosh~v/2T!2cosh~v/2T2 ivt!

sinh~v/2T!
.

For a path withn blips andn11 sojourns, we have

F~n!5(
j51

n FSj2 i(
k50

j21

j jhkXj ,kG1(
j52

n

(
k51

j21

j jjkL j ,k .

The interactions Sj ( j51, . . . ,n) are the blip self-
interactions~intrablip interactions!. The functionL j ,k with
jÞk represents the interactions between the blip pair$ j ,k%,
and the termXj ,k describes the interactions between the b
j and the earlier sojournk. Upon introducing the notation
Qj ,k5Q(t j2tk) andQ(t)5Q8(t)1 iQ9(t), the interactions
read

Sj5Q2 j ,2j218 5Q8~t j !,

L j ,k5Q2 j ,2k218 1Q2 j21,2k8 2Q2 j ,2k8 2Q2 j21,2k218 ,

Xj ,k5Q2 j ,2k119 1Q2 j21,2k9 2Q2 j ,2k9 2Q2 j21,2k119 .

The summation over the history of paths contributing
^s i& t ( i5z,x,y) results in an expansion in the number
tunneling transitions. The number is even for^sz& t , while it
is odd for ^sx& t and ^sy& t . The integration over the flip
times is compactly expressed by the notation

E
t0

t

Dn$t j%•••[E
t0

t

dtnE
t0

tn
dtn21•••E

t0

t2
dt1•••. ~3.2!

Before turning to the discussion of^sx& t and ^sy& t , we
briefly summarize previous findings on the quantity^sz& t
-
d
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s
g
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y
,

.
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-

@10,13,14,19#. With the appropriate generalization to th
present model, the exact formal solution for^sz& t is

^sz& t511 (
n51

`

~21!nE
0

t

D2n$t j%D2n~$t j%!22n

3 (
$j j561%

~Fn
~1 !Cn

~1 !2Fn
~2 !Cn

~2 !!. ~3.3!

Here,Dm($t j%) is the product ofm ~bare! probability ampli-
tudes for tunneling at the set of flip times$t j%,

Dm~$t j%!5)
j51

m

D~ t j !.

The influences of the stochastic force are in the functio
Fn
(6) , while the effects of the deterministic force are enca

sulated in the factorsCn
(6) given below. In the expression

~3.3!, the summation over the intermediate sojourn states
been performed already. The remainingj summation repre-
sents the 2n possibilities of arrangingn blips. Next, we turn
to the discussion of the off-diagonal elements. Since now
final hop back to the diagonal is missing, all paths dwell
time t in the final blip state, i.e.,j(t)51 or 21, depending
on whether one considers the stater1,21(t) or r21,1(t).
Upon employing Eq.~2.5!, the exact formal expressions fo
the off diagonal linear combinationŝsx& t and ^sy& t are
found to read

^sx& t5 (
n51

`

~21!n21E
0

t

D2n21$t j%D2n21~$t j%!22n

3 (
$j j561%

jn~Fn
~1 !Cn

~2 !1Fn
~2 !Cn

~1 !!, ~3.4!

^sy& t5 (
n51

`

~21!n21E
0

t

D2n21$t j%D2n21~$t j%!22n

3 (
$j j561%

~Fn
~1 !Cn

~1 !2Fn
~2 !Cn

~2 !!. ~3.5!

The biasing forces lead to phase factors

Cn
~1 !5coswn , Cn

~2 !5sinwn , ~3.6!

where wn5( j51
n j jq(t2 j ,t2 j21) is the phase accumulate

from then blips, andj jq(t2 j ,t2 j21) is the phase from blip
j of type j j , where

q~ t2 j ,t2 j21!5E
t2 j21

t2 j
dt8«~ t8!. ~3.7!

In order to represent the influence factorsFn
(6) in compact

form, we combine the intrablip and interblip correlations
n blips in the expression

Gn5expS 2(
j51

n

Q2 j ,2j218 2(
j52

n

(
k51

j21

j jjkL j ,kD ,
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56 337COHERENCES AND POPULATIONS IN THE DRIVEN . . .
and we introduce the phasesxn,k5( j5k11
n j jXj ,k . They de-

scribe the bath correlations between the sojournk and the
n2k succeeding blips. Then, the full influence functio
Fn
(6) take the form

Fn
~1 !5Gn)

k50

n21

cosxn,k , Fn
~2 !5Fn

~1 !tanxn,0 . ~3.8!

For the Ohmic spectral density~2.4!, Q(t) reads@24#

Q8~t!52a lnS G2~k!A11vc
2t2

G~k1 iTt!G~k2 iTt!
D ,

Q9~t!52aarctan~vct!, ~3.9!

whereG(z) is the gamma function, andk511T/vc . This
form holds for arbitrary cutoff frequencyvc . It is employed
in the numerical simulations reported below.

Analytical studies are made easier in the limit of lar
vc , in which Eq.~3.9! reduces to the more familiar form

Q8~t!52a ln@~vc /pT!sinh~pTt!#,
~3.10!

Q9~t!5pasgn~t!.

The exact formal series expressions~3.3!, ~3.4!, and~3.5! are
rather intricate, and they are by far too complicated to
handled analytically. Hence, one has to resort to suitable
proximations. Before proceeding along these lines, it is
vantageous to cast the expression for^sz& t into the form of a
master equation and the expression for^sx& t into an integral
relation. Interestingly, this proceeding can be performed
actly.

B. Exact master equation and integral relation

In previous work, it has been shown that the exact form
series expression~3.3! for ^sz& t can be rewritten in the form
of a generalized master equation~GME! @14#,

d^sz& t
dt

5E
0

t

dt8@Kz
~2 !~ t,t8!2Kz

~1 !~ t,t8!^sz& t8#.

~3.11!

The upper labels (1) and (2) indicate whether the kernel i
an even or odd function of the bias. The kernels themse
are defined in terms of the series expressions

Kz
~6 !~ t,t8!5 (

n51

`

~21!n21E
t8

t

dt2n21•••

3E
t8

t3
dt2D2n~$t j%!22n (

$j j561%
F̃n

~6 !Cn
~6 ! .

~3.12!

The product functionsF̃n
(6)Cn

(6) depend on 2n flip times.
The first one and the last one are identified byt8 and with
t. The 2n22 intermediate flip times are integrated out.

It is now important that the functionsF̃n
(6) are modified

influence functions involving suitable subtractions of pro
e
p-
-

x-

l

es

-

ucts of lower order influence functions. This is because
iteration of the GME produces products of uncorrelated
fluence functions that are absent in the original express
~3.3!. For instance, in the third step of the iteration of E
~3.11! there appear termsF̃n1

(1)F̃n2
(1)F̃n3

(6) , wheren1 ,n2 ,n3
are arbitrary positive integers. The modified influence fun
tion F̃n

(6) is now defined in such a way that these unwan
terms cancel each other. The analysis yields that the in
ence functionsF̃n

(6) are defined in terms of the original in
fluence functionsFn

(6) by

F̃n
~6 !5Fn

~6 !2(
j52

n

~21! j (
m1 ,•••,mj

Fm1

~1 !Fm2

~1 !
•••

3Fmj

~6 !dm11•••1mj ,n
.

The inner sum is over positive integersmj . By definition,
each subtraction involves again time ordering of the fl
times, witht1 being the earliest. In the subtracted terms,
bath correlations are only inside of the individual facto
Fmj

(6) . Correlations between these factors are absent.

It is interesting to note that the quantity^sx& t is connected
with ^sz& t by the exact integral relation

^sx& t5E
0

t

dt8@Kx
~1 !~ t,t8!1Kx

~2 !~ t,t8!^sz& t8#. ~3.13!

The kernels are again given in the form of expansions
volving the modified influence functions. We find

Kx
~6 !~ t,t8!5 (

n51

`

~21!n21E
t8

t

dt2n21•••

3E
t8

t3
dt2D2n21~$t j%!22n (

$j j561%
jnF̃n

~7 !Cn
~6 ! .

~3.14!

Finally, it is straightforward to see from Eqs.~3.5! and~3.3!
that ^sy& t can be obtained from̂sz& t by differentiation,

^sy& t52
1

D~ t !

d^sz& t
dt

. ~3.15!

The equivalence of Eq.~3.3! with ~3.11! can be seen from
the iterative solution of Eq.~3.11! with the insertion of the
series~3.12!. Indeed one finds that the ensuing expression
^sz& t coincides with Eq.~3.3!. Following similar lines, the
equivalence of Eq.~3.4! with Eq. ~3.13! can be shown.

So far, our treatment has been exact for generalD(t) and
«(t). In the following, for simplicity, we consider the trans
fer matrix elementD as time independent. In the particula
cases, we deal with a static straine0 as well as with a time-
dependent bias«(t) as in Eq.~2.2!.

IV. ANALYTIC RESULTS IN VARIOUS LIMITS

A. The noninteracting-blip approximation

In practical calculations, suitable truncations in the ser
expansions of the kernels must be performed. In certain
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338 56GRIFONI, WINTERSTETTER, AND WEISS
rameter regimes, the average blip length is small agains
average sojourn length. Under this assumption, which ha
be confirmed self-consistently, the blip-blip correlatio
L j ,k are negligible. Also the sojourn-blip interactionsXj ,k
may be disregarded except those withk5 j21. The latter are
approximately given byXj , j215Q9(t j ). This approximation
has been termed the noninteracting-blip approximation@4#.
In the NIBA, the influence functionF (n) is approximated by
an expression depending on the blip lengths$t j% alone,

FNIBA
~n! 5(

j51

n

@Q8~t j !2 i j jh j21Q9~t j !#.

Because interblip correlations are disregarded inFNIBA
(n) , the

modified influence factorsF̃n
(6) are zero fornÞ1, and the

expressions~3.12! and ~3.14! are truncated to

Kz
~1 !~ t,t8!5D2e2Q8~ t2t8!cos@Q9~ t2t8!#cosq~ t,t8!,

Kz
~2 !~ t,t8!5D2e2Q8~ t2t8!sin@Q9~ t2t8!#sinq~ t,t8!,

and

Kx
~1 !~ t,t8!5De2Q8~ t2t8!sin@Q9~ t2t8!#cosq~ t,t8!,

Kx
~2 !~ t,t8!5De2Q8~ t2t8!cos@Q9~ t2t8!#sinq~ t,t8!.

Evaluation of Eq.~3.11! and of the relations~3.13! and
~3.15! with these kernels gives the evolution of the damp
TSS within the NIBA. Note that the deterministic forces a
fully taken into account. The dynamics of^sz& t for time-
periodic driving has been studied in Refs.@10–13,18#. The
regimes in which the NIBA is valid have been discussed
Refs. @4,6# for a static bias, and in Refs.@10,13# for the
driven case. Quite generally one has found that the NI
describes the dynamics of^sz& t fairly well for high enough
temperatures and/or strong enough damping. Indeed, th
confirmed numerically~cf. Fig. 2!. In this parameter regime
and in the absence of driving, the NIBA correctly predic
either damped oscillations or monotonous relaxation towa
the equilibrium values ^sx&`5(D/e0)tanh(e0/2T) and
^sz&`5tanh(e0/2T). When T→0, this implies
^sx&`→D/ue0u and u^sz&`u→1. This shows unphysical di
vergence of the coherence fore0→0 and trapping of the
population in the lower well for arbitrarily smalle0. Hence,
the NIBA becomes unreliable in this regime~cf. Figs. 3–5!.
This supports the relevance of interblip correlations at l
T.

B. Markov limit

In the remainder of this section, we deal with the impo
tant case of weak dampinga!1 for which the coheren
regime extends over a broad temperature range. In this
section, we investigate the high-temperature regime in
so-called Markov limit.

For the Ohmic form~2.4!, the force correlation function
~2.3! becomesd correlated for highT and largevc ,

Rê z~ t !z~0!&T54apTd~ t !, ~4.1!
he
to

d

n

A

is

s

-

b-
e

which is the Markov limit. Now,Q(t) takes the form

Q~t!52a ln~vc/2pT!12paTutu1 ipasgn~t!, ~4.2!

in which the first term is an integration constant chosen s
that Eq.~3.10! smoothly maps on Eq.~4.2! at highT. By this
term, the bare tunneling frequencyD is dressed into the
temperature-dependent effective frequency

d5D~2pT/vc!
a5D r~2pT/D r !

a. ~4.3!

In the second form, we have introduced the renormaliz
tunneling matrix element@4#

D r5D~D/vc!
a/~12a!. ~4.4!

For the form~4.2!, the interactions inL j ,k cancel out so
that the NIBA becomesexact in the Markov limit. For a
static bias, the GME~3.11! and the relation~3.13! may be
solved by Laplace transformation and algebraic resoluti
Upon inserting the transforms of the kernels,

Kz
~1 !~l!5d2@l12paT#/@~l12paT!21e0

2#,

Kz
~2 !~l!5d2pae0 /@~l12paT!21e0

2#,

Kx
~1 !~l!5~pa/D!Kz

~1 !~l!,

Kx
~2 !~l!5Kz

~2 !~l!/~paD!,

we find

^sz~l!&5
1

lS 11
~pae02l22paT!d2

N~l! D , ~4.5!

^sx~l!&5Kx
~1 !~l!/l1Kx

~2 !~l!^sz~l!&, ~4.6!

where

N~l!5l@~l12paT!21e0
2#1d2~l12paT!. ~4.7!

From this we see that in the Markov limit the dynamics
completely described by the pole atl50, the residue of
which represents the equilibrium value

^sz&`5e0/2T, ^sx&`5d2/2DT, ~4.8!

and by the three poles given by the zeros of the cubic eq
tionN(l)50. At first sight, it seems that there are addition
contributions to^sx& t because of the poles ofKx

(1)(l) and
Kx
(2)(l). However, it turns out that the residues of the tw

contributions cancel each other.
The characteristics of the cubic equationN(l)50 are as

follows ~see also the discussion in Ref.@23#!. In the limit
ue0u!d, the zeros ofN(l) consist of a real root,l52g r ,
describing a relaxational contribution, and of a complex co
jugate pair,l52g6 iV, up to temperatureT5T1, where
T15(d2e0

2/2d)/pa1O(e0
4). In the regime T1,T,T2,

whereT25d2/4paue0u1ue0u/2pa1O(ue0u3), all three roots
are negative real. ForT.T2, two of them are again comple
conjugate. Asue0u is raised, the transition temperaturesT1
and T2 run towards each other, and they coincide at
critical bias strengthue0u5d/2A2. For any stronger bias, two
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of the roots are complex conjugate for all temperatures.
now concentrate on this regime. The Vieta relations
g r ,g, andV read

g r12g54paT, ~4.9!

g r~g21V2!52paTd2, ~4.10!

g212gg r1V254p2a2T21e0
21d2. ~4.11!

Upon picking up the four simple poles by Laplace conto
integration, we obtain

^sz& t5a1e
2gr t1^sz&`1@~12a12^sz&`!cosVt

1a2sinVt#e2gt ~4.12!

with the amplitudes

a15@V21g22d22~V21g2!^sz&`#/D,
~4.13!

a25@~g r2g!a11g~12^sz&`!#/V,

whereD5V21(g2g r)
2. Similarly, we have

^sx& t5b1e
2gr t1^sx&`2@~b11^sx&`!cosVt

2b2sinVt#e2gt. ~4.14!

The amplitudesb1 andb2 are given by

b15@e0d
2/D2~V21g r

2/4!^sx&`#/D,

~4.15!

b25@pad2/D1~g r2g!b12g^sx&`#/V.

The formulas~4.12!–~4.15! are the exact dynamical expre
sions fora!1 in the Markov regimeT aboveT0, where
T0 is of the order ofD r . These expressions are nonperturb
tive in the damping strength.

C. Weak damping and low temperatures

In the regimea!1 andT,T0, the Markov assumption is
not valid. At such low temperatures, even the noninteracti
blip assumption breaks down for weak damping. This is
cause the kernelsKz

(6) andKx
(6) may receive already in lin-

ear order ina contributions from all orders inD. On the
other hand, in the NIBA only the lowest order inD is kept.
For zero bias and weak damping, terms of higher orde
D contribute to the kernelKx

(1) , while not to Kz
(1) . For

nonzero bias and weak damping, the NIBA approximation
inconsistent for both kernelsKx

(6) andKz
(6) . From this we

infer that the NIBA does not describe properly the dynam
of ^sx& t for T,T0 and zero bias. For nonzero bias, lowT,
and weak damping, also the dynamics of^sz& t is not treated
properly by the NIBA. This is confirmed below.

Consider now systematically the regime of weak damp
and lowT. To be general, we assume the power-law fo
J(v)}vs at low frequencies. It is convenient to absorb t
leading cutoff dependence ofQ(t) in a Franck-Condon fac
tor that renormalizes the bare tunneling matrix. The ren
malized frequency scale is
e
r

r

-

-
-

in

s

s

g

r-

D r
25D2e2q. ~4.16!

For super-Ohmic damping (s.1), we have

q5
1

pE0
`

dvJ~v!/v2. ~4.17!

For Ohmic damping (s51), this integral is infrared diver-
gent. It is regularized with a lower cutoff frequency, which
self-consistently identified withD r @4,6#, yielding to leading
order the renormalized tunneling matrix element~4.4!. Keep-
ing q in the exponent for weak damping is important wh
the cutoff frequencyvc is very large.

Interestingly enough, the series expressions of the ker
can be summed in linear order ofQ(t). Following the lines
sketched in Refs.@14,25#, thez kernels in the weak-damping
limit are found to read

Kz
~1 !~ t,t8!5D r

2cosq~ t,t8!@11q2Q8~ t2t8!#

1D r
4E

t8

t

dt2E
t8

t2
dt1sinq~ t,t2!

3^sz& t2 ,t1
~0! sinq~ t1 ,t8!@Q8~ t2t8!1Q8~ t22t1!

2Q8~ t22t8!2Q8~ t2t1!#, ~4.18!

Kz
~2 !~ t,t8!5D r

2sinq~ t,t8!Q9~ t2t8!

2D r
4E

t8

t

dt2E
t8

t2
dt1sinq~ t,t2!

3^sz& t2 ,t1
~0! cosq~ t1 ,t8!@Q9~ t2t8!

2Q9~ t22t8!#. ~4.19!

In these forms, the first terms represent the NIBA. T
respective residual term describes a double-blip contribut
which is decorated at the sojourn intervalt22t1 in between
with ^sz& t2 ,t1

(0) . This insertion accounts for all possible inte

mediate tunneling events being uninfluenced by the envir
ment. Indeed for weak damping, we may drop the bath c
relations in the insertions. Nevertheless, we useD r instead of
D in view of the possibility thatvc is very large. Thus we
have

^sz& t,t0
~0! 5 (

n50

`

~2D r
2!nE

t0

t

D2n$t j%)
j51

n

cosq~ t2 j ,t2 j21!.

Similarly, the kernelsKx
(6)(t,t8) take the form

Kx
~1 !~ t,t8!5~D r

2/D!cosq~ t,t8!Q9~ t2t8!

1~D r
4/D!E

t8

t

dt2E
t8

t2
dt1cosq~ t,t2!

3^sz& t2 ,t1
~0! cosq~ t1 ,t8!

3@Q9~ t2t8!2Q9~ t22t8!#. ~4.20!
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Kx
~2 !~ t,t8!5~D r

2/D!sinq~ t,t8!@11q2Q8~ t2t8!#

1~D r
4/D!E

t8

t

dt2E
t8

t2
dt1cosq~ t,t2!

3^sz& t2 ,t1
~0! sinq~ t1 ,t8!@Q8~ t2t8!1Q8~ t22t1!

2Q8~ t22t8!2Q8~ t2t1!#. ~4.21!

Consider now first the case in which the driving for
f (t) is zero. Then, the insertion at the intermediate sojourn
the expressions~4.18!–~4.21! reads@cf. Eq. ~2.6!#

^sz& t2 ,t1
~0! 5e0

2/V21~D r
2/V2!cosV~ t22t1!, ~4.22!

where V5(D r
21e0

2)1/2. The insertion describes the un
damped full dynamics in the interval between a correla
blip pair. Upon interchanging the time integrals in Eq
~4.18!–~4.21! with the frequency integral definingQ(t), the
kernels can be calculated in analytic form@25#.

The GME~3.11! is solved by Laplace transformation an
algebraic resolution. The inversion of the Laplace transf
mation yields

^sz& t5@e0
2/V22^sz&`#e2gr t1^sz&`

1@~D r
2/V2!cosVt1a2sinVt#e2gt, ~4.23!

with amplitudea2 and equilibrium valuêsz&` ,

a25~g re0
21gD r

2!/V32g r^sz&` /V,

~4.24!

^sz&`5~e0 /V!tanh~V/2T!.

The incoherent relaxation rateg r and the damping rateg of
the oscillatory contribution are given by@25#

g r5~D r
2/2V2!J~V!coth~V/2T!,

~4.25!

g5g r /212pads,1~e0
2/V2!T,

which reduce in the Ohmic case to

g r5pa~D r
2/V!coth~V/2T!,

g5g r /212pa~e0
2/V2!T. ~4.26!

These expressions are exact for weak Ohmic (s51) and
weak super-Ohmic (s.1) damping. For sub-Ohmic damp
ing (s,1), there is no consistent weak damping limit of t
form discussed here@14#. According to Eq.~3.15!, the quan-
tity ^sy& t is obtained by differentiation of Eq.~4.23!.

The dynamics of̂ sx& t results from Eq.~3.13! by use of
Eq. ~4.23! and of the kernels~4.20! and ~4.21!. We find

^sx& t5@e0D r
2/DV22^sx&`#e2gr t1^sx&`

2@~e0D r
2/DV2!cosVt2b2sinVt#e2gt,

~4.27!

where
n

d
.

r-

b25~D r
2/DV!@pa1e0~g r2g!/V2#2g r^sx&` /V.

The equilibrium value is

^sx&`5~D r
2/DV!tanh~V/2T!. ~4.28!

It is important to note that these results for lowT smoothly
match those of Sec. IV B aroundT5D r .

For a!1, a useful quantity is the linear combination

N~ t !5~e0 /V!^sz& t1~D/V!^sx& t , ~4.29!

which describes the difference between the populations
the ground state and the excited state. We get

N~ t !5tanh~V/2T!@12e2gr t#

1~e0 /V!@e2gr t1~g r /V!sin~Vt !e2gt#. ~4.30!

This describes relaxation from the initial valuee0 /V to the
equilibrium value tanh(V/2T). There is also a minor contri
bution in Eq.~4.30! representing a damped oscillation.

Following these lines, the dynamics of^sz& t under the
influence of a monochromatic high-frequency field has be
studied in Ref. @14#. Alternative approaches based o
second-order perturbation in the TSS-bath coupling h
been frequently employed in this parameter regime. In th
treatments, the adiabatic renormalization of the bare tun
ing matrix element is usually disregarded. For a discuss
of ^sz& t andN(t) under monochromatic low-frequency driv
ing, we refer to Ref.@26#.

V. THE INTERACTING-BLIP CHAIN APPROXIMATION

In this section, we deal with the random force beyond
NIBA for generala. The treatment of the stochastic force
improved by taking into account, besides the intrablip int
actions, the correlations between all nearest-neighbor b
L j , j21, and the full interactions of the nearest-neighb
sojourn-blip pairsXj , j21.

Diagrammatically, we have a chain of blips in which th
nearest-neighbor interblip correlations are fully included.
pictorial description illustrating the contribution of thre
blips to ^sz& t is sketched in Fig. 1. Because of the pictor
appearance, this approximation has been termed
‘‘interacting-blip chain approximation’’@21#. In the IBCA,
the influence functionF (n) is

F IBCA
~n! 5(

j51

n

@Sj2 i j jh j21Xj , j21#1(
j52

n

j jj j21L j , j21

with the full nearest-neighbor sojourn-blip interaction

Xj , j215Q2 j ,2j219 1Q2 j21,2j229 2Q2 j ,2j229 .

Again, the deterministic biasing force is fully included.
Consider now the dynamics ofrs,s8(t) in the IBCA. First

of all, we introduce the conditional probabilitiesR1(t;t) and
R2(t;t) for the particle that is released from the diagon
stateh0511 at time zero and that hops at timet2t into the
final off-diagonal statej f511 and j f521, respectively,
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FIG. 1. Three-blip contribution tôsz& t in the IBCA. The solid line represents a sojourn and the wavy line a blip interval. The blip
correlationsL j , j21 are symbolically sketched by a dashed curve and the sojourn-blip correlationsXj , j21 by a dotted curve. The intrablip
interactions and the individual interactions inL j , j21 are not displayed.
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and afterwards remains there until timet. Shortly, we shall
present a set of coupled integral equations for the quant
R6(t;t).

Upon integrating the conditional probabilitiesR6(t;t)
over the periodt, one ends up with the off-diagonal elemen
of the density matrix at timet,

^sx& t5E
0

t

dt@R1~ t;t!1R2~ t;t!#, ~5.1!

^sy& t5 i E
0

t

dt@R1~ t;t!2R2~ t;t!#. ~5.2!

The population̂ sz& t ensues from Eq.~5.2! by integration,

^sz& t512DE
0

t

dt8^sy& t8, ~5.3!

as follows from Eq.~3.15!. Here, the integration overt8
takes into account that the final hop back to the diago
could be at any timet8 in the interval 0<t8<t.

According to Eqs.~5.1!–~5.3!, the dynamical problem is
solved up to quadratures once the quantitiesR6(t8;t) are
known in the interval 0<t<t8<t.

To derive a set of inhomogeneous coupled integral eq
tions for the conditional probabilitiesR6(t8;t), we first de-
fine a kernel matrixYj,j8(t2 ,s1 ,t1) that depends on thre
time intervals. The kernel matrix represents the possible
ementary blip-sojourn-blip processes. It describes a two-
transition from the off-diagonal statej8, which has been vis-
ited for a periodt1 via an intermediate diagonal state, to t
off-diagonal statej, which is visited for a periodt2. The
time spent in one of the two intermediate diagonal state
given bys1. The kernel contains the intrablip interaction
the last blip and the interactions of this blip with the prece
es

al

a-

l-
ep

is

-

ing sojourn and with the preceding blip. Performing the su
over the two possible sojourn states in between, the ke
reads

Yj,j8~t2 ,s1 ,t1!52jj8
D2

2
e2Q8~t2!2jj8L2,1cosX21.

~5.4!

Next, for a stay in a blip statej561, say lasting from time
t82t until time t8, one has to write a factor

B6~ t8,t!5expF6 i S e0t1E
t82t

t8
dt9 f ~ t9! D G , ~5.5!

which takes into account the influences of the determini
force in the blip in question. In the numerical computation
major difficulty is that the driving-induced contribution i
Eq. ~5.5! depends on the absolute timest82t and t8 of the
blip, and not on the blip lengtht alone.

Next, we observe that the factorizing system-reservoir
tial state involves that the initial sojourn has infinite leng
since we putt0→2`. As a result, the initial sojourn-blip
pair depends on the blip lengtht alone. This special pair is
represented by a factor of the form

A6~t!57 i ~D/2!exp@2Q8~t!6 iQ9~t!#. ~5.6!

The iteration of the elementary sojourn-blip sequence ge
ates all paths the system can travel. Readily, the sum ove
possibilities of stringing together sojourn-blip sequences
be combined in a set of integral equations. Piecing toge
the elements~5.4!–~5.6!, we find



re
om

q.

so

ne

e
M
e-
tio

th
or
s

ng
,
nt
k
p
o-
e
he
o
th
u
ne
ri

a-
a

t

e

n
a

t
a
m

A

ed
ibe
he
he
e
n-

A
at
m-

e-

ics

e
n

m
dy-

e-

342 56GRIFONI, WINTERSTETTER, AND WEISS
R6~ t8;t!5B6~ t8,t!FA6~t!1 (
k56

E
0

t82t
ds

3E
0

t82t2s
dt8Y6,k~t,s,t8!

3Rk~ t82t2s;t8!G . ~5.7!

The inhomogeneous coupled integral equations~5.7! are the
dynamical equations within the IBCA. As remarked befo
the dynamics is solved up to quadratures after having c
putedR6(t8;t) from Eq. ~5.7!.

A simple numerical algorithm consists in solving E
~5.7! by iteration on an equidistant grid in time@21#.

The method presented here differs from the iterative
lution of the GME~3.11! ~cf. Ref. @14#!. To include nearest-
neighbor blip correlations in the GME, the respective ker
has to be considered at least in orderD4. However, iteration
of the GME does not lead to linked blip clusters of high
order than considered in the kernel. Furthermore, the G
~3.11! is in the form of a convolution in the absence of tim
dependent deterministic forces, while the dynamical equa
~5.7! is generally in nonconvolutive form.

As the nearest-neighbor blip correlations constitute
most relevant corrections to the NIBA, the IBCA applies f
longer propagation times than the NIBA. The IBCA is mo
suitable for moderate-to-strong damping. Fora!1, the treat-
ment given in Sec. IV C is superior.

Systematic improvement of the IBCA is possible alo
two lines of development. For weak-to-moderate damping
is suggestive by itself to insert all possible tunneling eve
of the undamped system into the intervals of the chain lin
a proceeding similar to that in Sec. IV C. For higher dam
ing, the first step to do would be to include all next-t
nearest-neighbor interblip correlations. The relevant kern
Yj,j8 would then depend on five time intervals, namely, t
lengths of three blips and of two sojourns in between. Up
bookkeeping more and more time intervals in the kernels,
range in which the bath correlations are taken into acco
exactly is systematically enlarged. The corresponding ge
alization of the numerical algorithm is clear, but the nume
cal costs increase drastically with each step.

VI. NUMERICAL SIMULATIONS

In the following, we discuss several illustrative applic
tions of the formulas presented in Secs. IV and V. In contr
to most of the previous works, besides the population^sz& t
we also study the coherences. Because of the simple rela
~3.15!, the discussion of the quantitŷsy& t is disregarded.
We concentrate on four complementary cases. Without
ception, we choose Ohmic damping~2.4! with cutoff fre-
quencyvc530D. In models I and II, the bias is static. I
models III and IV, the response to linear and to nonline
harmonic driving is investigated.

In model I, we choose T50.5D, a50.1, and
e0520.5D for the static bias. This case serves to illustra
that for weak damping the Markov limit is reached already
moderately high temperatures. In Fig. 2, the Markov dyna
ics as described by the formulas presented in Sec. IV B
,
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compared with the NIBA dynamics based upon the NIB
kernels with the bath correlation function~3.9!. The dynam-
ics of ^sz& t and ^sx& t are displayed separately. The dash
curves represent the NIBA while the solid curves descr
the Markov limit. Although the temperature is rather low, t
underdamped dynamics is fairly well described within t
Markov approximation. The minor differences in th
asymptotic values originate from the linearization of the ta
gens hyperbolicus implicit in Eq.~4.8!. On the scale of the
figures, the curves of the IBCA are very close to the NIB
curves. They are not drawn in Fig. 2. This confirms th
interblip correlations are of minor importance in this para
eter regime. With increasingT, damping gets larger while
the differences between the NIBA and the Markov limit b
come systematically smaller.

In the remainder, the interest is focused on the dynam
of the TSS at lowT, as significant corrections to the NIBA
are most likely to occur in this regime. In model II, w
chooseT50.05D,a50.05, and zero deterministic bias. I
Fig. 3, the coherent dynamics of the population^sz& t and of
the coherencêsx& t is depicted up to times where the syste
is almost completely relaxed. The solid curves show the
namics according to the formulas~4.23! and ~4.27!. For the
population, the NIBA~dashed curve! nearly coincides with
the solid curve. The IBCA curve is not displayed since d

FIG. 2. The population̂sz& t and the coherencêsx& t are shown
for model I (a50.1, T50.5D, e0520.5D). The solid curves rep-
resent the Markov limit and the dashed curves the NIBA.
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viations from the other curves are almost undiscernib
From this we see that the leading damping influence in
populations is correctly taken into account by all three me
ods. The minor deviations are due to the different consid
ation of higher order terms in the individual approximation

In contrast, the NIBA~dashed curve! clearly fails for
^sx& t . The IBCA ~dash-dotted curve! brings about a consis
tent improvement. The unbounded increase of^sx& t beyond
unity in the NIBA originates from the first term in Eq.~3.13!
~the second term does not contribute for zero bias!. The time
integral over the NIBA kernelKx

(1) increases nearly linearly
with t. In the systematic weak-damping treatment, the
crease of the integral is eliminated and^sx& t reaches asymp
totically the equilibrium value Eq.~4.28!, which is close to
one for model II. The full curve represents Eq.~4.27!. The
IBCA curve describes the dynamics correctly at short tim
while it overestimates damping at long times. Upon inclu
ing tunneling events within the intervals of the chain links
Fig. 1, as discussed at the end of Sec. IV C, the modi
IBCA coincides with the full curve. In the absence of dis
pation,^sx& t50 for all t>0 @Eq. ~2.6!#.

In models III and IV, we choose periodic driving

f ~ t !5easinnt. ~6.1!

FIG. 3. The population̂sz& t and the coherencêsx& t are shown
for model II (a50.05, T50.05D, e050). The solid curves repre
sent formulas~4.23! and ~4.27!, and the dashed curves the NIBA
The dash-dotted curve in the plot of^sx& t represents the IBCA.
.
e
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d

In model III, we put T50.05D, a50.25, n55D, and a
moderate amplitudeea52.5D. We choosee050 in Fig. 4,
and e0520.5D in Fig. 5. The solid curves represent th
IBCA and the dash-dotted curves the NIBA.

In Fig. 4, there are again only minor deviations of t
IBCA from the NIBA curve for^sz& t , while the differences
are drastic for^sx& t . At long times, both the population
difference ^sz& t and the coherencêsx& t reach the time-
periodic asymptotic state. For sufficiently strong amplitu
ea , higher order harmonics of the driving frequency beco
relevant in the asymptotic dynamics. In the absence o
static bias,selection ruleshold. Namely, only theodd har-
monics persist at long times in̂sz& t , as discussed in Ref
@13#. Following similar lines, upon employing Eqs.~3.11!
and~3.13!, and observing the symmetry of the kernels und
bias inversion, one finds that only theevenharmonics persist
in the asymptotic dynamics of̂sx& t for zero bias. For the
moderate driving amplitudeea chosen in Fig. 4, the funda
mental mode governŝsz& t at long times. It is also visible
that ^sx& t asymptotically oscillates with twice the drivin
frequency. The selection rules fore050 have been con-
firmed in numerous simulations for different sets of para
eters.

FIG. 4. The population̂sz& t and the coherencêsx& t are shown
for model III (a50.25, T50.05D, e050). The driving force has a
moderate amplitudeea52.5D, and the frequencyn is 5D. The solid
curves represent the IBCA and the dash-dotted curves the NIBA
long times, onlyoddharmonics contribute tôsz& t , and onlyeven
harmonics tô sx& t .
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When a static bias is added, there are again only mi
differences between the NIBA and the IBCA curve f
^sz& t . For that, the corresponding curves are not shown.
^sx& t , the deviation in the asymptotic dynamics between
IBCA and the NIBA is much smaller as compared with th
casee050. However, the deviation is still significant. Thi
indicates that interblip correlations are relevant for^sx& t in
this parameter regime. In Fig. 5, both odd and even harm
ics contribute tô sx& t at long times. This confirms that th
above selection rules do not hold when symmetry is brok
by a static bias.

Finally, consider model IV in which we choose a symme
ric TSS (e050) with T50.05D anda50.25, as in model
III, but with driving frequency n55D and amplitude
ea52.4n512D. The parameters are chosen such that
system is dynamically trapped in the initial state in the a
sence of damping@8# ~dash-dotted curve in Fig. 6!. This
genuine quantum effect is weakened by friction. Nevert
less even fora50.25, the destruction of dynamical localiza
tion ~DL! still occurs on a much longer time scale than t
tunneling period 2p/D @9# or the relaxation time 1/g r of the
undriven TSS~see full curve in Fig. 6!. Correspondingly, the
coherencê sx& t oscillates around zero with a small ampl
tude. In the symmetric TSS considered here,^sx& t is identi-
fied with the difference between the populations of t
ground state and of the excited state. Hence, even in
presence of DL in̂sz& t , there is a periodic transfer of popu
lation between the lower and upper energy eigenstate of
isolated TSS. These findings for the driven TSS should
compared with those forea50. In the absence of driving, the
coherence reaches asymptotically a value near 1/2~full
curve!, implying that mainly the ground state is occupied
long times. The differences between the NIBA and the IBC
are minor forea512D.

VII. CONCLUSIONS

We have studied the population difference^sz& t and the
coherenceŝ sx& t and ^sy& t for the damped driven TSS

FIG. 5. Plots of^sx& t for the parameters of model III with
additional static biase0520.5D. For nonzeroe0, also odd harmon-
ics persist at long times.
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which contain complete information about the average
namics of the reduced system. We have shown in Sec. I
that ^sx& t is related to^sz& t by an integral relation, while
^sy& t follows from ^sz& t by differentiation. We have also
presented an exact generalized master equation for^sz& t .
The expressions obtained are exact and hold for genera
ternal modulation of both the transfer matrix element and
bias energy of the isolated TSS. In Sec. IV, we have d
cussed different analytical approaches ranging from the h
temperature or Markov limit to the asymptotic low
temperature regime.

In Sec. V, we have put forward an approach in which t
correlations induced by the stochastic force are fully tak
into account within all nearest-neighbor blip-sojourn-blip s
quences. Because the bath-induced correlations decay
time, the nearest-neighbor interactions represent the m
important corrections to the widely used noninteracting-b
approximation. From this we infer that for low temperatur
the IBCA should render a correct description of the dyna
ics for lowera than the NIBA. Indeed, this has been co
firmed numerically. Nevertheless, at very lowT very long-

FIG. 6. Plots of^sz& t and ^sx& t for model IV @same as mode
III, but ea512D andn55D which satisfy the localization criterion
for a50 ~dash-dotted curves!#. Fora50.25, the localization is still
stable ~dashed curves! on the time scale on which the undrive
system is almost relaxed~full curves!. The curves of̂sx& t show an
oscillatory transfer of population between the energy eigenstate
the undriven, undamped system.
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ranged correlations that are not described properly by
IBCA may become important at long times. We have giv
lines along which further improvement beyond the IBCA
achieved.

We have numerically compared the dynamics of the v
ous approaches in Sec. VI for numerous sets of parame
We have discussed examples in which the NIBA gives
fairly good description of the population̂sz& t , but fails to
describe the coherences. In the absence of a determin
bias, e.g., the NIBA expression for^sx& t violates the unitar-
ity bound for lowT and even diverges with time, while th
IBCA result stays within the unitarity bound for all times. I
the presence of deterministic driving, the NIBA solution f
^sx& t heeds the unitarity bound, but the deviations from
IBCA are still significant at lowT.

Further, we have found that, for a harmonically mod
lated forcef (t) and zero static bias, selection rules gove
the asymptotic dynamics. Namely, at long times, only o
higher harmonics contribute to the oscillatory dynamics
^sz& t , while only even harmonics persist for^sx& t . Finally,
.
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n

i-
rs.
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tic
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f

we have studied the forced dynamics for a set of parame
of the monochromatic field for which the undamped TSS
‘‘dynamically’’ localized ~DL! in one of the eigenstates o
sz . For weak dissipation, DL is stable on short-time scal
so that the system remains almost trapped in the initial st
Correspondingly, the coherence^sx& t oscillates around zero
with small amplitude. This indicates an oscillatory transfer
population between the lower and upper energy eigensta
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